
KSCE Journal of Civil Engineering (2024) 28(12):5851-5862

DOI 10.1007/s12205-024-0472-2
pISSN 1226-7988, eISSN 1976-3808

 www.springer.com/12205

Transportation Engineering
Safety-First Autonomous Vehicle Technology: Empirical Assessment of 

Sensor Performance in Diverse Environmental Conditions

Changhun Kim a, Junhyeong Moon b, Junghwa Kim c, and Chihyun Shin c

aHeadquarter for Future Technologies, AI·Mobility Research Dept, ITS Korea, Ansan 15327, Korea 
bMember, Intelligent Transportation System Lab, Advanced Institute of Convergence Technology, Seongnam 13449, Korea 
cMember, Dept. of Urban and Transportation Engineering, Kyonggi University, Suwon 16227, Korea

1. Introduction

The SAE standard specifies that level 4 is the point at which 

driver intervention is not required when operating an autonomous 

vehicle. Beyond that, the autonomous driving system takes control

of all driving functions (SAE, 2021). This means that as the level 

of autonomous driving technology increases, the role and

responsibility of the driver diminish, while the importance of the 

autonomous driving system and the performance of autonomous 

vehicles become more significant. The necessity of enhancing 

the performance of autonomous vehicles for the era of autonomous 

driving is consistently highlighted, with particular emphasis on 

the importance of sensing equipment used to perceive and analyzed

the surrounding traffic environment (Duan et al., 2021). 

Previous studies have examined the functional levels of sensors 

in autonomous vehicles and analyzed the devices' performance 

limits and vulnerabilities (Ort et al., 2020; Zhao et al., 2020). This

has shown that the performance levels of sensors in autonomous 

vehicles can vary based on environmental factors such as light 

levels and weather, as well as road traffic factors such as road 

markings, congestion, and moving objects (Müller, 2017; Schrepfer 

et al., 2018; Ponn et al., 2019). However, most previous studies 

have been limited to predefined experimental environments due 

to issues with technology security and data acquisition. Additionally, 

while they have identified the factors that influence sensor 

performance, they have provided insufficient analysis on the 

extent of these impacts.

To address the shortcomings of previous studies and present 

new insights, this study introduced the following distinctions. 

Firstly, it utilized data collected from actual road environments 

rather than data collected in controlled experimental settings. 

Additionally, it aimed to prioritize the factors influencing sensor 

performance by comparing their relative impacts, thus deriving 

the order of importance of these influencing factors. This study 

investigates the factors influencing the performance of autonomous 

vehicle sensors and examines the extent of performance variation 
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depending on these influencing factors.

2. Literature Review

2.1 The Impact of Weather on Autonomous Vehicle 
Sensors

Zhang et al. (2023) investigates the impact of adverse weather 

conditions on five major Automated Driving Systems sensors. It 

enumerates sensor fusion solutions, with perception enhancement

through machine learning and image processing methods, such 

as de-noising, being the core solution. Future Automated Driving 

Systems sensor candidates and the challenges posed by insufficient 

relevant datasets were also examined. The study concludes that 

V2X and IoT have promising potential for future weather research.

Emphasis was placed on the need for robust sensor fusion and 

advancements in sensing under extreme weather conditions.

Sezgin et al. (2023) evaluates the performance of radar, lidar, 

and camera sensors for autonomous driving under adverse weather 

conditions such as rain and fog. The research highlights the 

impact of these conditions on sensor reliability and presents a 

fuzzy logic and genetic algorithm-based monitoring system to 

assess and maintain sensor performance. The proposed system 

demonstrates potential in ensuring safe autonomous driving by 

continuously evaluating sensor data quality and identifying areas 

affected by weather.

Yoneda et al. (2019) reviews recognition technologies for 

automated driving under adverse weather conditions, highlighting 

the necessity for robust sensor fusion and infrastructure-based 

solutions. Key challenges include ensuring sensor reliability and 

designing cost-effective systems. The authors suggest that defining 

operational domains and application ranges can facilitate the 

realistic integration of these systems into society.

Steinbaek et al. (2017) conducted a study that aimed to investigate

the advantages and disadvantages of the main sensors used in 

autonomous driving systems, namely Radar, LIDAR, and Vision 

sensors. Through the study, the authors noted that no single sensor 

could operate effectively in all environments, which highlights 

the need for sensor fusion in autonomous driving systems. The 

authors classified the functional level of sensors into five grades 

based on different criteria, including range, angular velocity, and 

weather conditions. This classification allowed for a detailed 

analysis of the sensors' performance in different environments 

(Table 1). 

In the realm of autonomous driving system development, pivotal 

components include sensors like Radar, Li-DAR, Camera, and 

GNSS. De Ponte Müller (2017) underscored the significance of 

cooperative functioning among these sensors through V2V 

communication, recognizing their inherent functional limitations 

in diverse environments. Similarly, Ponn et al. (2019) emphasized 

the critical role of environmental awareness for ensuring safety, 

presenting a novel methodology based on sensor range analysis 

to derive test scenarios. While both studies proposed alterations 

in sensor functional levels based on the surrounding environment, 

they were primarily theoretical values derived from sensor

specifications. 

Dreissig et al. (2023) analyses various approaches to LiDAR 

perception under adverse weather conditions, focusing on the 

availability of data, point cloud processing, and robust perception 

algorithms. It identifies significant gaps in current research and 

highlights promising directions for future work, emphasizing the 

need for comprehensive real-world datasets and advanced sensor 

fusion techniques to mitigate weather-induced performance 

degradation

Previous studies suggest that the performance of autonomous 

vehicle sensors can vary with the weather. It is particularly important

to pay attention to the changes in performance not only of image-

based camera sensors but also of electronic sensors such as radar 

and LiDAR. These studies measuring sensor performance were 

conducted in controlled experimental environments. However, it 

should be considered that these experimental environments differ

from real-world traffic conditions. To obtain more meaningful 

research results, it is deemed necessary to utilize data collected 

from actual road environments.

2.2 Methods for Comparing Big Data Samples
Many studies have been conducted, such as analyzing based on 

the referred test to test big data and using it to improve the sensor 

function (Lall, 2015; Luo et al., 2015). Big data can be analyzed 

by examining the distribution of data sets. This method can be 

extended to identity verification by checking the distribution for 

two samples.

There are many research methodologies for testing two or 

more samples. Kim and Lee (2017) compared many distribution-

independent tests used to verify the equality of two-sample 

distributions. They conducted simulations to evaluate the power 

of each test and confirmed the superiority of the Kolmogorov-

Smirnov test. This test has a characteristic that is sensitive to the 

shape of the distribution (Darling, 1957). In addition, the test was 

judged to have the best power when test of homogeneity between 

groups with different sample size

The verification of the equivalence of two samples composed 

of big data can be performed using statistical methods, as well as 

algorithm-based pattern matching techniques. A representative 

methodology is Dynamic Time Warping (DTW), which performs 

Table 1. Comparison of Environment Perception Sensor Capabilities

Items Radar LiDAR Vision

Range ++ + ++

Range resolution ++ ++ 0

Angular resolution 0 ++ +

Works in bad weather ++ 0 -

Works in dark ++ ++ --

Works in bright ++ + +

Color / contrast -- -- ++

Radial velocity ++ 0 -

Note. Adapted from Next Generation Radar Sensors in Automotive Sen-
sor Fusion Systems, by Steinbaeck et al., 2017, IEEE
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non-linear warping along the time axis of time-series data (Cho 

and Lee, 2008). The DTW algorithm was first introduced by R. 

Bellman and R. Kalaba in the 1960s and was first used in speech 

recognition research in the 1970s. The superiority of this algorithm

has been proven, and it continues to be utilized in various fields 

up to the present (Senin, 2008). In the field of transportation, 

Taylor et al. (2015) analyzed the diversity of drivers' car-following 

behavior and situation-dependent behavior based on driver trajectory 

data using the DTW algorithm.

Two methodologies that enable the verification of the equivalence

of samples composed of big data are introduced. The Kolmogorov-

Smirnov test allows for statistical verification. The DTW (Dynamic 

Time Warping) algorithm can measure the similarity of waveforms, 

making it applicable to non-linear data and time-series classification. 

A common feature of these methodologies is that they can verify 

the equivalence of samples even if the sample sizes are not the 

same. This provides significant advantages when analyzing big 

data, where it is often difficult to match the number of data points 

between samples.

3. Data

In this study, driving data collected directly by autonomous vehicles

are used. The raw data collected at the time were redefined into a 

usable form through parsing. This raw data encompasses com-

pressed front camera (1EA) data and compressed corner camera 

(4EA) data, further categorized into sensor perception data, vehicle 

data, and autonomous driving controller data. Sensor perception 

data includes lane and object recognition data obtained from cameras 

and radar, while vehicle data encompasses information related to 

speed, acceleration, gear, turn signals, and more. Autonomous 

driving controller data comprises details such as driving mode, 

self-driving trajectory, the presence of leading vehicles, stop flag 

indications, and longitudinal and lateral control command values.

The data were collected between June and September 2021 in 

Sejong City, South Korea. The same autonomous vehicle collected 

data over several days from a 6.4 km section of road. The route 

where the data for this study was collected is illustrated on the 

map in (Fig. 1). The survey section encompasses various operating 

environments, detailed in (Table 2) below. Throughout the mentioned 

period, the data were tested approximately 20 times under varying 

weather conditions, categorized into sunny, rainy, and cloudy 

environments. The data storage method involves organizing 

information into one directory based on the acquisition time. 

Within this directory, a JSON file is created, containing information

on sensor recognition data, vehicle data, and autonomous driving 

control system data. Additionally, for each frame, image data and 

LiDAR point cloud data sources are generated.

In the predefined route, transportation facilities such as school 

zones and roundabouts exist, and the control right is switched 

twice. Through this scenario, driving in a more complex environment

was carried out. The following (Table 3) shows the information 

of the vehicle used for autonomous driving. The autonomous 

vehicle used for driving is a Hyundai Sonata, equipped with 4 

LiDAR sensors, 5 camera sensors, and 1 Radar sensor. The 

autonomous driving data collected using this vehicle consists of 

autonomous driving sensor source data, sensor recognition data, 

vehicle data, and autonomous driving control system data. Table 4

Fig. 1. Actual Road Data Acquisition Path

Table 2. Autonomous Vehicle Data Collection Pathways and Details

Section Detailed environments for each section

A Start (Start Record)

B Autonomous Vehicle drives at 50 kph

C Takeover, a school zone near Boram Elementary School.

D Autonomous Vehicle drives at 40 kph in the section with 

roundabout

E Takeover, a school zone near Geulbeot Elementary School.

F Autonomous Vehicle drives at 50 kph

G Arrive (End of Record)
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represents the specifications of autonomous vehicle sensor 

functions. Table 5 describes the components of data collected 

from sensors.

Three types of sensors were attached to the autonomous vehicle 

used in the experiment. Unfortunately, not all types of sensing 

data could be identified, so we utilized data from the Radar and 

Camera sensors. The elements composing the Radar sensor 

recognition data are as follows (Table 6). The elements composing 

the Camera sensor recognition data are as follows (Table 7).

4. Methodology

4.1 Two-Sample Kolmogorov-Smirnov Test
The two-sample Kolmogorov-Smirnov test is an identity test 

proposed by Smirnoff (1939) and is a representative non-parametric 

test. To understand the distribution according to various 

environments, the K-S test, which can test the identity of two 

groups, was argued to be the most ideal statistical methodology for 

analyzing the data, and the study was conducted. Also, the 

reason for choosing the test method is that it has the best 

power in the fit test between groups with different sample 

sizes. Data acquired from actual driving of autonomous 

vehicles are non-continuous values and are suitable for non-

parametric tests.

The empirical cumulative distribution function of the two-

sample Kolmogorov-Smirnov test is as follows Eq. (1) (Basic 

assumptions are independent)

Table 3. The Characteristics of Autonomous Vehicle

Category Information

Vehicle SONATA DN8 (Hyundai)

Number of LiDAR 4

Number of Camera 5

Number of Radar 1

Table 4. Autonomous Vehicle Sensor Function Specification

Item Specification

Model FHD390C-USB(D)

Camera Operating Temperature -40(Celsius) - +85(Celsius)

Model FHD 1080p, 30 fps

Effective pixels 1/2.7”, 1920 × 1080

Dynamic Range 120 dB

Image Signal Processing AE/AWB, HDR, LFM

Serializer V-by-One@HS

FOV H60 Degree / H110 Degree

WaterProof IP67

Table 5. Components by Actual Autonomous Vehicle Data

Data Detail

Source data of AV’s Sensor Front and corner camera image data, LiDAR point cloud data

Sensor recognition data camera recognition result (lane, object), Front Radar object recognition result.

Vehicle data vehicle speed, acceleration, steering angle, gear, turn signal, GPS location, etc.

Autonomous driving control system data Autonomous driving mode (Auto/Manual), driving trajectory of vehicle etc.

Table 6. Radar Sensor Recognition Data Element

Classification Explain Unit

ObjNo Object Number -

ID Object ID -

Status Status -

LiteralRate Lateral speed m/s

Angle Angle deg

Range Distance m

Speed Relative Speed m/s

PosX Relative distance X m

PosY Relative distance Y m

Table 7. Camera Recognition Data Element

Classification Explain Data Unit

Type Left lane type

0-dashed 1-solid 

2-undecided 3-road edge 

4-double lane mark

5-Botts’dots 6-invalid

-

Quality Recognition Quality
0,1-Low Quality

2,3-high Quality

View Range Physical view range of lane mark Range: 0 ~ 127.996 m

ParC0 Lane Position Parameter Range: -127 ~ 128 m

ParC1 Heading Angle Parameter Range: -0.357 ~ 0.357 rad

ParC2 Lane Curvature Parameter Range: -0.02 ~ 0.02 n/a

ParC3 Lane Curvature Derivative Parameter Range: -0.00012 ~ 0.00012 n/a
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(1)

Fn(x) : Cumulative probability function of the observed sample

The statistics of the K-S test are as follows Eq. (2).

(2)

In the above,  and  are the empirical cumulative 

distribution function of x and y. Also, the D is the test statistic, 

which is the maximum value of the difference between two 

cumulative distribution functions. 

Similarity, The Kolmogorov-Smirnov Goodness-of-Fit Test is 

a concept proposed by Massey Jr (1951) to test the fit between 

two groups based on the largest difference between the empirical 

cumulative distribution function and the hypothetical cumulative 

distribution function. The purpose of the test is to test whether 

one sample group has the same distribution as the hypothetical 

probability distribution such as normal distribution (Priest, 1983). 

Therefore, it was deduced that it was not a methodology suitable 

for this study, which had to derive whether the two sample groups 

had the same distribution. Accordingly, a two-sample Kolmogorov-

Smirnov test was adopted as one of the methodologies for 

analyzing the data set of this study.

4.2 Dynamic Time Warping
The DTW algorithm searches for the alignment with the least 

cumulative cost, which is referred to as the warp path. According 

to Keogh and Pazzani (2001), the approach using DTW can also 

be applied to identify the optimal alignment between two time-

dependent data series. The DTW algorithm is also suitable method 

for processing large vehicle tracking datasets. The formula and 

visualization for the DTW algorithm are as follows Eqs. (3) −

(6); (Table 8). 

 (3)

 (4)

 (5)

 (6)

Using Eqs. (4) and (5), we calculate the elements of the 

rows and columns of the DTW table, and use Eq. (6) to 

calculate the remaining elements. Finally, we use Eq. (3) to 

calculate the dynamic similarity between the two data sets, 

which is DTW; the more similar the two data sets, the closer 

the value will be to 0 (Im and Kim, 2020). The DTW 

algorithm is a technique that allows for the analysis of two 

independent time series data by adjusting the time points.

Based on these characteristics, we adopted a time series test 

based on the DTW algorithm as a second methodology for 

analyzing the data set of this study.

4.3 Hypotheses and Research Procedures 
Based on the reviewed self-driving literature sensors, the mentioned 
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Fig. 2. Visualization of the Research Process and Detailed Contents

Table 8. Table for DTW to Measure Similarity between Time Series Data

Y / X 1 2 3 ··· n-1 n

1 D(1, 1) D(1, 2) D(1, 3) ··· D(1, n-1) D(1, n)

2 D(2, 1) D(2, 2) D(2, 3) ··· D(2, n-1) D(2, n)

3 D(3, 1) D(3, 2) D(3, 3) ··· D(3, n-1) D(3, n)

··· ··· ··· ··· ··· ··· ···

m-1 D(m-1, 1) D(m-1, 2) D(m-1, 3) ··· D(m-1, n-1) D(i-1, n)

m D(m, 1) D(m, 2) D(m, 3) ··· D(m, n-1) D(m, n)
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methodology was applied to establish a theoretical hypothesis 

that can be compared with actual self-driving data. Among self-

driving data, the sensors that can be analyzed in sensor recognition 

data are cameras and radar sensors. As a result, a hypothesis was 

established that there would be a change in the functional level of 

the sensor depending on the weather environment, and this was 

verified through subsequent research.

In this study, the analysis method can be divided into three 

stages: data collection, data analysis, and conclusion. During 

the data collection stage, the task involves selecting suitable 

data for analysis from the raw data collected by autonomous 

vehicles. In the data analysis stage, the collected data is 

analyzed using the most appropriate methods for each dataset 

and conducting homogeneity test. In the conclusion stage, the 

analysis results are compiled to validate the research hypotheses. 

The chart of research process can be confirmed in the 

following (Fig. 2).

5. Analysis

5.1 Radar Sensor Datasets Analysis 
As there was a slight difference in the start and end points 

depending on the investigation period and environment, the start 

and end points were matched for each frame and the analysis 

conducted. 

The analysis of radar sensor datasets focused on “Relative Speed” 

and “Object Number”. To gain a comprehensive understanding of 

the collected Relative Speed and Object Number data, a scatter 

plot was generated. In order to mitigate the influence of outliers 

stemming from intermittent sensor errors or external environmental 

factors, only the data within the 30th to 70th percentiles of the 

scatter plot were considered, defining this range as the normal 

data range.

The normal range of the scatter plot, represented by Relative 

Speed data, was determined to be approximately -70 kph to 140 kph 

Fig. 3. Scatter Plot of Radar Sensor Data: (a) Relative Speed, (b) Object Number-Right
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on a clear day. Extending this speed range to the scatter plot of 

cloudy and rainy days allowed for a visual comparison of the 

Radar's ability to recognize Relative Speed under varying weather 

conditions. The overall data pattern was explored through scatter 

plots, amalgamating a substantial number of Frame datasets to 

generate graphs depicted as areas. The critical focus was on 

observing the density of data marked in blue within the normal 

range specified by the red line, as illustrated in (Fig. 3(a)). It is 

evident that the area occupied by the blue color in the graph on 

clear days is broader than on other weather conditions. Additionally, 

subtle differences were noticeable when comparing rainy and 

cloudy days. These findings suggest a discernible impact of 

weather conditions on the performance of autonomous vehicle 

sensors.

Table 9 displays the results for the number of objects collected 

by the radar in autonomous vehicles per frame, categorized by 

weather conditions. The objective is to measure the performance 

variation of the radar sensor based on different weather conditions, 

utilizing the number of detected objects as the performance metric.

For an unbiased comparison, we observed the average value and 

the range between the 30th and 70th percentiles, followed by a 

general interpretation of the analysis results. The highest number 

of detected objects occurred on clear days (42.8), while the 

lowest was observed on rainy days (34.3). The number of detected

objects on cloudy days fell between the values for clear and rainy 

days (40.7). Similar patterns were observed in the range between 

the 30th and 70th percentiles, suggesting a degradation in sensor 

performance due to varying weather conditions. The scatter plot 

and data distribution trend can be observed in the following 

(Fig. 3(b)).

5.2 Camera Sensor Datasets Analysis 
As the data is divided into left and right lanes, data sets surveyed 

in sunny, rainy, and cloudy weather environments were constructed 

respectively. The acronyms of the configured datasets are (Table 10) 

and the acronyms are used in the analysis subsequent. The dataset 

consists of data observed in three types of weather environments, 

and analysis was performed on sunny-rain and sunny-cloudy 

data based on the data surveyed on a sunny day. For the analysis 

method, test of homogeneity between the two data sets was 

performed using the two-sample Kolmogorov-Smirnov test and 

Time series clustering based on DTW algorithm. 

Preferentially we performed a homogeneity verification on 

the dataset consisting of the recognition Quality items from the 

Camera recognition data. We adopted the two-sample Kolmogorov-

Smirnov test as the verification technique. Tables 11 to 13 provide

basic statistics on the lane recognition quality levels of the 

camera sensor based on different weather conditions. The quality 

levels are categorized from 0 to 3, where 0 and 1 represent Low 

Quality, and 2 and 3 represent High Quality. 

Specifically, Table 11 presents basic statistics for the recognition 

quality level values of the left lane. Table 12 provides basic 

statistics for the recognition quality level values of the right lane, 

and Table 13 represents the Kolmogorov-Smirnov test values 

conducted based on the values of both lanes.

Through the analysis, it was determined that the calculated p-

value in all tests was less than 0.05, leading to the rejection of the 

null hypothesis that the distributions of the two groups are the 

Table 9. Descriptive Statistics of Detected Objects Number (Radar data)

Classification

(Number of objects detected)
Sunny Rainy Cloudy

Average 42.8 34.3 40.7

70 Percentile 48 39 48

50 Percentile 43 35 42

30 Percentile 37 30 35

Table 10. Camera Lane Recognition Data Elements and Descriptions

Lane Data Description

Left Lane

Sunny_left (SL) Data collected from the left side of the vehicle on a clear day

Rainy_left (RL) Data collected from the left side of the vehicle on a rainy day

Cloudy_left (CL) Data collected from the left side of the vehicle on a cloudy day

Right Lane

Sunny_right (SR) Data collected from the right side of the vehicle on a clear day

Rainy_ right (RR) Data collected from the right side of the vehicle on a rainy day

Cloudy_ right (CR) Data collected from the right side of the vehicle on a cloudy day

Table 11. Descriptive Statistics on the Left Lane Area (Camera data)

Lane Quality Sunny_left Rainy_left Cloudy_left

Min. 0.000 0.000 0.000

Q1 1.000 0.000 1.000

Median 2.000 2.000 2.000

Mean 1.937 1.679 1.957

Q3 3.000 3.000 3.000

Max. 3.000 3.000 3.000

Table 12. Descriptive Statistics on the Right Lane Area (Camera data)

Lane Quality Sunny_right Rainy_right Cloudy_right

Min. 0.000 0.000 0.000

Q1. 0.000 0.000 0.000 

Median 2.000 2.000 2.000 

Mean 1.897 1.573 1.811 

Q3 3.000 3.000 3.000 

Max. 3.000 3.000 3.000 
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same. This affirmation confirms that the functional level of sensors

undergoes changes in adverse weather conditions compared to 

the theoretically constructed sunny days. Illustrated in (Fig. 4), 

the empirical cumulative distribution functions for the comparison 

group are presented based on weather and lane conditions. 

The x-axis delineates the lane quality levels, while the y-axis 

represents the cumulative distribution values. In each graph title, 

values corresponding to the control group are depicted in red 

before the title, and values corresponding to the comparison group

are represented in blue after the title. This visual representation 

further emphasizes the observed distinctions in sensor performance 

based on weather and lane conditions.

Next, we performed homogeneity verification on a dataset 

consisting of View Range items from Camera recognition data. 

We adopted Time Series Cluster Analysis using the DTW algorithm 

as the verification technique The time series data consists of a 

total of six types by combining View Range data by weather and 

dividing it for the left and right sides of the autonomous vehicle. 

Naming of time series data follows the definition in (Table 10). 

(Fig. 5) illustrates the processed time-series data of the camera 

sensor recognition of the autonomous vehicle collected frame by 

frame. 

The X-axis of the graph represents the elapsed time of data 

collection (Frame Progression). The Y-axis represents the view 

range of the camera sensor. The color of each time-series graph 

is differentiated based on the weather conditions. In this figure, it 

can be observed that graphs of different colors do not overlap or 

exhibit similar patterns. This indicates variations in sensor 

functionality depending on the weather, suggesting the need to 

examine the extent of differences that occur.

We conducted time series clustering analysis using the DTW 

algorithm for the generated six datasets. The analysis aimed to 

verify the performance difference of sensors according to weather 

conditions. If the similarity between time series is high, there is 

no performance difference in sensors according to weather 

conditions. Conversely, if the similarity between time series is 

low, it can be concluded that there is a performance difference in 

sensors according to weather conditions. The verification of time 

series similarity based on the DTW algorithm can be confirmed 

by analyzing the distance (warping path) between time series 

matrix elements. During the analysis process, we search for the 

path with the smallest sum of Warping Path, and the total sum of 

the path becomes the DTW distance. The DTW distance represents 

Table 13. The Result of Two-sample Kolmogorov-Smirnov Test

Lane Data D p-value

Left Lane
Sunny_left & Rainy_left 0.082977 2.2e-16

Sunny_left & Cloudy_left 0.18848 2.2e-16

Right Lane
Sunny_right & Rainy_right 0.074743 2.2e-16

Sunny_right & Cloudy_right 0.15384 2.2e-16

Fig. 4. The Empirical Cumulative Distribution Functions of Camera Sensor Recognition Data (Recognition Quality data)
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the final similarity value, and the results of the similarity analysis 

between each time series cluster are shown in Figs. 6 to 8 and 

Table 14. 

Based on the DTW algorithm, the results of the time series 

similarity analysis showed that the DTW distance between sunny- 

cloudy days was the smallest, while the DTW distance between 

Fig. 5. Time Series of Camera Sensor Recognition Data (View range data)

Fig. 6. DTW Results: (a) Sunny_left & Cloudy_left, (b) Sunny_right & Cloudy_right
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sunny-rainy days was the largest. DTW distance on a cloudy-

rainy day was analyzed to have a value between the previous two 

groups. These results reveal that there is a difference in sensor 

performance depending on the weather environment, especially 

on rainy days.

5.3 Brief Conclusion
Analyzing changes in sensor functionality concerning environmental

factors relied on the examination of sensor recognition data 

obtained from the actual autonomous driving data collected during 

the survey phase. The camera and radar sensor recognition data 

were compiled to form a dataset. The evaluation of sensor 

performance levels did not focus on specific scenarios or isolated 

moments but encompassed an overall assessment of data collected

throughout the driving process along a predetermined route. 

While sensor performance degradation might occur on clear days 

due to specific points or external reflective objects, these instances 

are deemed negligible when compared to the total driving time. 

Consequently, we assume that data collected on clear days 

represents a baseline for normal sensor performance. Building on 

this assumption, we proceeded to verify differences in sensor 

performance levels between cloudy and rainy days.

Confirmation of disparities in sensor performance levels based 

Fig. 7. DTW Results: (a) Sunny_left & Rainy_left, (b) Sunny_right & Rainy_right

Fig. 8. DTW Results: (a) Cloudy_left & Rainy_left, (b) Cloudy_right & Rainy_right 

Table 14. Results of DTW Distance Analysis between Time Series Clusters

Classification Sunny & Cloudy Sunny & Rainy Cloudy & Rainy

Left Lane 3090.32 3537.31 3370.62

Right Lane 3635.84 3884.95 3641.42
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on weather conditions is derived from a reverse inference drawn 

from the outcomes of similarity testing. The results of similarity 

testing among weather groups indicated a lack of resemblance 

between the groups. This substantiates the independence of each 

weather group, implying differences in sensor performance levels

contingent on weather conditions.

6. Conclusions

This study investigates how autonomous driving sensors adapt to 

different environments using data from autonomous vehicles. 

We established hypotheses through literature review and analyzed 

sensor data collected in sunny, rainy, and cloudy weather conditions. 

Two specific elements per sensor were selected, and datasets 

were created for analysis. To test the hypothesis, we applied the 

appropriate analysis methodology to each sensor data. For the 

Recognition Quality data, we applied the Kolmogorov-Smirnov 

test to test the homogeneity of the datasets for each weather event.

For the View Range data, we applied the DTW algorithm to test 

the similarity of the time series data for each weather event.

According to our analysis findings, the highest similarity was 

observed in the data set of sunny and cloudy days, while the 

lowest similarity was found in the comparison between sunny 

and rainy days. The similarity between the data set of cloudy and 

rainy days fell between the values of the previous two results. 

These out-comes substantiate our research hypothesis that sensor 

performance varies based on weather conditions. Specifically, 

the analysis results highlight distinctions in sensor performance 

related to weather, thereby validating our initial hypothesis.

This study is significant as it examines sensor performance using

real driving data from autonomous vehicles, unlike traditional 

research done in controlled environments. We investigate how 

weather conditions affect sensor performance, offering important 

insights. Safety evaluation is crucial for autonomous vehicle 

commercialization, requiring an index to assess environmental 

recognition. Implementing algorithms to adjust speed according 

to environmental conditions is vital for safety. Restricting vehicle 

speed in severe weather conditions aligns with regulations but 

may hinder technological advancement.

Through our research, we have identified variations in the 

functional levels of autonomous driving sensors. We anticipate 

that expressing these changes within specific ranges or values 

could serve as criteria or scales for evaluating the safety of 

autonomous driving. In future research, our objective is to develop

quantitative metrics for assessing the functional levels of autonomous 

vehicle sensors. Additionally, we aim to enhance sensor performance

verification by collecting more precise multidimensional data, 

refining considerations for weather conditions, spatial environments, 

and traffic scenarios beyond the scope of the data utilized in this 

study.
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